skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kort-Kamp, Wilton J. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Casimir interactions play an important role in the dynamics of nanoscale objects. Here, we investigate the noncontact transfer of angular momentum at the nanoscale through the analysis of the Casimir torque acting on a chain of rotating nanoparticles. We show that this interaction, which arises from the vacuum and thermal fluctuations of the electromagnetic field, enables an efficient transfer of angular momentum between the elements of the chain. Working within the framework of fluctuational electrodynamics, we derive analytical expressions for the Casimir torque acting on each nanoparticle in the chain, which we use to study the synchronization of chains with different geometries and to predict unexpected dynamics, including a “rattleback”-like behavior. Our results provide insights into the Casimir torque and how it can be exploited to achieve efficient noncontact transfer of angular momentum at the nanoscale, and therefore have important implications for the control and manipulation of nanomechanical devices. 
    more » « less